Biochemical Oxygen Demand

A bioassay test, involving measurement of oxygen consumed by micro-organisms while stabilizing biologically decomposable organic matter under aerobic conditions

Need

To determine the pollution load of waste water
The degree of pollution in water sources
Self purification capacity of sources
Designing of treatment facilities
Efficiency of waste water treatment methods

Methodology

Principle

The BOD test is based upon determinations of dissolved oxygen

 \succ It can be measured directly

 \succ In general, a dilution procedure is applied.

Procedure

Preparation of dilution water

- Aerate the required volume of D.W. by bubbling compressed air for 1-2 days to attain D.O. saturation
- Add 1 ml each per litre of dilution water Phosphate buffer Magnesium sulphate Calcium chloride Ferric chloride
- ≻ Mix well
- In case, waste not expected sufficient bacterial population, add seed (2 ml settle sewage / litre of dilution water)

Determination of D.O.

- i) Samples and ii) Blank, on initial and after 5 days
- 2 ml MnSO₄ + 2 ml Alkali-iodide-azide+stopper immediately
- \succ Mix well + allow the ppt. to settle
- > Add 2 ml concentrated H₂ SO₄ + mix well till ppt. dissolve
- Take 203 ml (correspond to 200 ml) sample in a conical flask
- Titrate against sodium thiosulphate (0.025 N) till pale yellow colour + starch solution + blue colour + titrate till colourless

Observations

 $D_0 = D.O.$ in sample on 0th day $D_1 = D.O.$ in sample on 5th day $C_0 = D.O.$ in Blank on 0th day $C_1 = D.O.$ in Blank on 5th day

 $C_0 - C_1 = D.O.$ depletion in dilution water alone

 $D_0 - D_1 = D.O.$ depletion in sample + dilution water

 $(\overline{D}_0 - \overline{D}_1) - (\overline{C}_0 - \overline{C}_1) = \overline{D}.O.$ depletion due to microbes

Calculation

1 ml of 0.025 N sodium thiosulphate = 0.2 mg of Oxygen D.O. in mg/l = $(0.2 \times 1000) \times ml$ of thiosulphate 200

B.O.D. in mg/l $(D_0-D_1) - (C_0-C_1)$ mg X Decimal fraction of sample used

Results B.O.D. 5 days at 20° C = mg/l

Interferences

- Ferrous ion
- \succ Ferric ion
- > Nitrate
- Microbial mass
- High suspended solids
 - ✤ Lack of nutrients in dilution water
 - ✤ Lack of acclimated seed organisms
 - Presence of heavy metals
 - Presence of toxic materials

Bacteriological Analysis

Bacteria Single cell microscopic organisms lacking chlorophyll Coliform group

Contamination

- Insanitary condition of surrounding area
- Unhygienic practices
- Discharge/seepage of sewage and domestic wastewater

Need

- Impact on water quality
- Potability for human consumption
- To prevent water-borne diseases
- To assess the quality of raw and treated water
- Specially to detect Faecal Contamination

Bacteriological analysis : mainly includes estimation of

- Total coliforms
- Faecal coliforms

Methodology

Approved techniques generally used as per "Standard Methods for the examination of water and wastewater"

- .Membrane Filter (MF)
- Multiple Tube Dilution (MTD)

MF-technique

Principle

Biochemical reactions are used to detect the various groups of micro-organisms

MF-technique - Merits

- Results in 24 hours (MTD 48 to 96 hours)
- Larger volume of samples can be tested (MTD less volume)
- Results with greater precision (MTD MPN)
- Require less laboratory space (MTD More space)
- Easy processing (MTD Tedious)
- Useful during normal and emergencies (MTD Difficult in emergencies)

Limitations : Samples with more turbidity

Colour

- Coloured water is not acceptable for drinking (Aesthetic as well as toxicity reasons)
- Industrial wastewater require colour removal before discharge into water courses

Definition

- The term colour means true colour that is the colour of water from which turbidity has been removed. True colour of water is due to dissolved material
- Apparent colour is due to suspended matter as well as due to substances on solution removed by filtration

Unit for Measurement of colour

• Unit for colour measurement is based on platinum cobalt scale

Methods for Colour Measurement

Visual Comparison Method

- Colour of the sample is determined by visual comparison with known concentration of coloured colutions prepared by diluting stock platinum cobalt solution
- OR properly calibrated glass coloured disk is used for comparison
- This method is useful for potable water and water in which colour is due to naturally occuring materials
- This method is not applicable to most highly coloured industrial wastewater

Spectrophotometric Method

- This method is applicable to potable and waste both domestic and industrial
- In this method light absorbed or transmitted is measured at dominant wavelength of a particular hue of sample
- Spectrophotometer should have an effective operating range from 400 to 700 nm before measurement remove turbidity either by filtration or by centrifuging
- Colour hues for dominant wavelengths ranges are